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Difference-quotient turbulence model: The axisymmetric isothermal jet

Peter W. Egolf1 and Daniel A. Weiss2,*
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F-75231 Paris Cedex 05, France
~Received 15 September 1997; revised manuscript received 18 March 1998!

Taking the difference-quotient turbulence model into consideration, the mean velocities and the second-
order fluctuation correlations, also called Reynolds stresses, of the axisymmetric isothermal jet in a quiescent
surrounding are analytically calculated. Three propositions are stated and proved. They relate a normalized
turbulence fluctuation intensity and two turbulent energies on the center line of the jet to its spreading angle.
The experiments confirm all propositions and several other model results convincingly.
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PACS number~s!: 47.27.Eq, 47.27.Ak
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I. INTRODUCTION

In daily life turbulent round jets are ubiquitous fluid dy
namic elements. For example, a variety of different jets
cur at the outlet of hair dryers, in whirlpools, above ove
heated pressure cookers, in the vicinity of exhaust pipes
gas and oil burners, and at outlets of aircraft power un
However, this fluid dynamic phenomenon does not have o
technical applications. For example, if a candle light
blown out by a round turbulent jet of breathing air, th
human-produced jet causes a second nonisothermal ve
plumelike jet to disappear. The fully developed isotherm
axisymmetric jet is a fundamental example of free turb
lence, which at present can only be calculated by empir
laws and is also apparently impossible to understand u
first physical principles@1#.

Wakes of different geometries and plane co- and coun
flows are similar basic elements with a mean shear. Ro
jets are correctly interpreted as axisymmetric co- or coun
flows. In the past century numerous experimental studie
basic fluid dynamic examples were performed by engine
On the other hand, physicists are more concerned with fi
theoretical aspects of turbulence, e.g., elimination of infra
divergences and renormalization@2#, study of structure func-
tions @3#, anomalous scaling@4#, multifractal nature@5#, tur-
bulent cascades and intermittency@6#, and universality@7#.
According to L’vov and Procaccia, the marriage of the ph
ics and mathematics of turbulence with the engineer
knowledge is a challenge ahead, which will last far into t
21st century@8#.

Early theoretical results of the axisymmetric jet were o
tained by applying the mixing-length hypothesis, introduc
by Prandtl in 1925@9#. One year later Tollmien@10#, on this
basis, calculated solutions of the mean downstream velo
which show a slightly too narrow maxima symmetric to t
axis of the jet. Schlichting, assuming a constant eddy visc
ity, obtained better coincidence in the inner part of the
but with larger deviations far away from the center line~see,

*Present address: Daimler-Benz AG, Research and Techno
P.O. Box 2260, 89013 Ulm, Germany.
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e.g., Ref.@11#!. In a monumental monograph Abramovic
@12# summarized all the available empirical theories of fr
jets, jets in finite spaces, turbulent jets in compressible ga
jets in the presence of flame fronts, etc.

Measurements of the mean velocity of round jets w
performed using Pitot tubes. These measurements are
summarized by Hinze@13# ~see also@14#!. Later on most of
the experimentally determined turbulence quantities were
sociated with Corrsin and co-workers@15–17#. More recent
measurements were performed by Wygnanski and Fie
@14# and Rodi@18#. In 1988 Hussein@19# applied hot wire
and laser Doppler anemometry and more recently exp
mental results were published by Panchapakesan and Lu
performed in a round jet of air and a helium jet@20#.

To restrict this treatise, out of the great variety of je
listed in the Introduction, only axisymmetric, fully develope
turbulent jets are considered. Isothermal flows of pure liqu
or gases without additional particles, e.g., pollutants and
ter vapor, are described. Therefore, reactive flows are
excluded. The jet behavior calculated is created by for
convection and not, for example, by buoyancy effects.

This article consists of derivations based on physi
laws, but also contains some assumptions. These do not
tain empirical constants and they figure neatly into exist
theories and describe experimental data very well. We h
tried to give the reader the possibility to distinguish str
results from model considerations only. Always when an
sumption is introduced, an A has been placed in front of
corresponding equation number, e.g., see~A1! below, etc.
The P denotes a proposition, e.g.,~P47!.

II. MOTIVATION OF THE DIFFERENCE-QUOTIENT
MODEL

Because of the obvious insufficiency of local gradie
type turbulence transport, e.g., see the work of Corrsin@21#
and the more recent work of Bernard and Handler@22#,
Hinze, Sonnenberg, and Builtjes@23# ~see also Hinze’s book
on turbulence@13#! proposed, considering the turbulent she
stress analogously to the description of the usual shear s
of viscoelastic fluids@24#, by including a memory behavio
depending on the time variablet,
y,
459 © 1998 The American Physical Society
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u28u1852«E
0

`

dt M̃ ~t! F]ū1

]x2
~ t2t!1

]ū2

]x1
~ t2t!G ,

«}x2ū1 . ~A1!

The turbulent shear stressu28u18 is a correlation of the veloc
ity fluctuationu18 in the x1 direction withu28 in the x2 direc-
tion ~compare Sec. V!.

An equation of this type can also describe the decay
isotropic turbulence. This approach was based on earlie
tuitive ideas of Prandtl@25#. Today, in turbulence research
we have some conceptual understanding of approach~A1!,
even though a detailed mathematical derivation from ba
equations is, to our knowledge, yet to be found. When de
ing the Reynolds equations containing time-averaged val
second-order moments appear. Further equations can b
tablished to solve the problem also containing these sec
order moments. However, then again, one-order-higher
relations, now third-order moments, appear in the expand
system of equations. Continuing, in the end, one has to s
a set of infinite partial differential equations. It is known th
in certain cases when scaling applies, such a set can b
placed by one equation only, with just a dependence on
lowest-order moment, but showing a time delay and/o
nonlocality @26#. Such a transformation is equal to the tec
nique of making a closure and that is exactly the proced
introduced by the application of a turbulence model. In
closure, higher-order moments are described as function
moments, which are at least one order smaller. With assu
tion ~A1! the simplest case is considered, where the seco
order correlation is given by a functional dependence on
first-order moments only and these are identical to the m
velocitiesu1 andu2.

In Eq. ~A1! the modified eddy viscosity« is directly pro-
portional to a length scalex2 and the time-averaged velocit
u1, respectively (ū12ū1min

). M̃ (t) denotes a memory func
tion characteristic for the turbulent flow considered. Its
mension is@t#21. This approach is also meaningful becau
the production of turbulence is mainly driven by the gradie
of the time-averaged velocity field reaching from the pres
back to some time when a time correlation vanishes. I
known that memory effects in time are the analog to non
calities in space. Because at the moment we are conside
only quasistationary cases, it is useful to study Eq.~A1! in
three-dimensional Euclidean space by replacing time by
transverse coordinate of the shear flow and the memory fu
tion M̃ (t) by a nonlocality functionÑ(x28),

u28u1852sx2~ ū12ū1min
!E

2`

2`

dx28Ñ~x2 ,x28!
]ū1

]x2
~x22x28!.

~A2!

The functions is related to the Reynolds number. In E
~A2! the assumption of a flow with a large velocity gradie
transverse to the direction of the main flow is considered
that this gradient is at least one order larger than the on
the downstream direction with reverse indices. Therefore,
smaller gradient has been neglected. Because the nonloc
can be considered as a non-normalized probability func
f
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for the turbulent momentum transfer of eddies with differe
correlation lengths and corresponding radii, respectively,
generalize Eq.~A2!,

u28u1852sx2~ ū12ū1min
!

E 2`
` dx28N~x2 ,x28!

]ū1

]x2
~x22x28!

E 2`
` dx28N~x2 ,x28!

.

~3!

The normalized nonlocality functionÑ considered has now
been replaced by a non-normalized counterpartN. It can be
described by a linear combination of Heaviside distributio
~two-sided step ‘‘functions’’! or a characteristic function, re
spectively, with the properties

N~x2 ,x28!5H 0, x28,x2

1, x2<x28<x21l

0, x21l,x28 .

~A4!

Our approach states that equal contributions of the tim
averaged velocity gradient occur in a space interval of c
relation lengthl. Substituting in Eq.~A4! x21l by x2max

and combining Eqs.~3! and ~A4!, it follows that

u28u1852sx2~ ū12ū1min
!

E x2

x2maxdx28
]ū1

]x28
~x28!

E x2

x2maxdx28

. ~5!

It is known that in many turbulent flows the mean velocity
the main flow direction can be separated in the order of
two variablesx1 andx2 . Therefore, with this assumption, th
right-hand side of Eq.~5! can be integrated. This leads to th
difference-quotient turbulence model~DQTM!, which was
developed several years ago by completely other means~see
Ref. @27#!:

u28u18~x1 ,x2!52sx2@ ū1~x1 ,x2!2ū1min
~x1!#

3
ū1max

~x1!2ū1~x1 ,x2!

x2max
2x2

. ~6!

x2 is a characteristic length of the flow problem, perpendic
lar to the main flow direction. The quantityx2max

denotes the

space coordinate, whereū1 takes its maximum or supremum
as a function of the variablex2 .

In 1994, by applying the difference-quotient turbulen
model, it was shown that the available simple turbulen
models only relate to one or at maximum two eddy sizes
therefore are not expected to produce more than approxim
solutions. The DQTM, which is a generalization of Prandt
mixing-length theory and corresponds to an infinite set
eddy sizes, produces several simple analytical results,
axial and radial profiles of turbulence intensities, for wak
@27#, the plane Couette flow@28#, and the plane Poiseuille
flow @29#, all agreeing well with experimental data. Th
wake flow also defines a free turbulent flow problem and
Couette and Poiseuille flows are ‘‘wall-turbulent’’ she
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flows. In the two latter cases, in the differential equatio
and their solutions an order parameter occurs, being a fu
tion of the inverse Reynolds number. This naturally appe
ing order parameter was shown to be equivalent to the
duction of turbulent kinetic energy in the entire domain p
unit length in the downstream direction.

The equations in this section also lead to ideas how
difference-quotient turbulence model could be generalize
describe more complex flows, e.g., with temporal behav
However, this would be beyond the scope of this paper. F
thermore, they show how a simple scheme for numer
calculations, based on the DQTM, could be designed. In c
trast to standardk-« model applications, instead of one sp
tial derivative over large domains, arithmetic averages of
rectional derivatives would have to be taken in
consideration.

III. BASIC EQUATIONS

When a fluid streams out of a round nozzle into an in
nitely extended domain and the Reynolds number is v
large

Re5
u0d0

n
>25 000, ~7!

then a fully developed turbulent jet is observed. Such a je
drawn in Fig. 1. It has a linearly growing width in the dow
stream direction. The quantityd0 denotes the diameter of th
nozzle andu0 the constant velocity of the laminar flow in th
e1 direction at the locationx150.

FIG. 1. A turbulent round jet is emerging from a nozzle wi
diameterd0 . According to current theory, the fictitious core leng
x0 is used in the description of the problem~a!. In a projection the
time-averaged velocity component in the longitudinal direction
the center line is shown~b!, which is constant in the core regio
(x1,x18). After a transition region (x18,x1,x19) in the self-
similarity domain (x19,x1) the velocity is hyperbolic.
s
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The core region is parabolic~dark shaded domain! and
has a lengthx18 , but in a simplified model it is drawn a
triangle reaching to the fictitious core lengthx0 . A photo-
graph of a plane jet, with analogous features, and its cor
shown in Fig. 2. The domainx1.x19 is the self-similarity
domain.

The fluid is assumed to be incompressible and the den
r to be constant. All other physical quantities are separa
into a time mean value and a corresponding fluctuation qu
tity, so that

x5x̄1x8, xP$u1 ,u2 ,...% ~8a!

x̄850. ~8b!

Now operation~8a! is applied to the continuity and th
Navier-Stokes equations. Taking the average of all the te
in these equations leads to the Reynolds equations. F
quasistationary state and for flows free from mean rotatio
motion

ū350, ~9a!

]

]x3
w̄50, w̄P$ū1 ,u18u38,...%, ~9b!

the following system is obtained@13#:

]ū1

]x1
1

1

x2

]

]x2
~x2u2!50, ~10!

ū1

]ū1

]x1
1ū2

]ū1

]x2
1

1

r

] p̄

]x1
1

]

]x1
u18

21
1

x2

]

]x2
~x2u28u18!50,

~11!

ū1

]ū2

]x1
1ū2

]ū2

]x2
1

1

r

] p̄

]x2
1

]

]x1
u28u181

1

x2

]

]x2
~x2u28

2!

2
1

x2
u38

250. ~12!

n

FIG. 2. Photograph of a jet. Smoke particles injected into
turbulent zones show an intense mixing and thus a visualizatio
the turbulent domains. Hardly any transport of smoke into the la
nar core region takes place. Therefore, in a plane jet the core
clearly be detected photographically. Its parabolic time-avera
profile becomes transparent when the photographic exposure tim
high.
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Because very large Reynolds numbers are assumed~7!, the
viscous terms in the momentum equations are neglected.
plying a scale analysis@13#, one obtains a reduced equatio
compared to Eq.~12!,

1

r

] p̄

]x2
1

1

x2

]

]x2
~x2u28

2!2
1

x2
u38

250. ~13!

At this stage the assumption of isotropy of the fluctuat
intensities is introduced

u18
25u28

2 ~A14a!

5u38
2. ~A14b!

Only with Eq.~A14b! Eq. ~13! reduces and can be integrate

p̄1ru28
25p0 , ~15!

wherep0 denotes the undisturbed constant pressure far f
the turbulence domain. To drop the pressure term in Eq.~11!,
Eq. ~15! can be substituted

ū1

]ū1

]x1
1ū2

]ū1

]x2
1

]

]x1
~u18

22u28
2!1

1

x2

]

]x2
~x2u28u18!50.

~16!

After applying assumption~A14a! to cancel the third term, it
follows that

ū1

]ū1

]x1
1ū2

]ū1

]x2
1

1

x2

]

]x2
~x2u28u18!50. ~17!

In this reduced form the momentum equation is applied. I
important to stress that the third and fourth terms in Eq.~11!
cannot be neglected by magnitude of order estimates as
are both of the same order as the fifth term~e.g., compare
maxima in Figs. 5 and 8!.

IV. SELF-SIMILARITY

From experimental observations it is known that for
x1.x19 a self-similarity domain exists~Fig. 1!, where the
mean physical quantities can be made dimensionless to
come functions of only one variable. This leads to the p
sibility of transforming the two partial differential equation
~10! and~17! into a single ordinary differential equation. Th
following self-similarity relations are assumed to hold. D
tances from the polex1-p are replaced byx1 because in the
self-similarity domainx1@upu:

ū15u0 S x1

x0
D p1

f 1~h!, ~18!

ū25u0S x1

x0
D p2

f 2~h!, ~19!

u28u1852u0
2 S x1

x0
D p2,1

f 21~h!, ~20!

h5
x2

b
, ~21a!
p-

m

s

ey

l

e-
-

b5b S x1

x0
D p0

x0 . ~21b!

Substituting these relations into the continuity equation~10!
leads to

p1f 12p0h
d f1

dh
1

1

b

1

h

d

dh
~n f2!50, ~22!

where

p01p12p251 ~23!

had to be assumed to obtain self-similarity. Similarly, t
momentum equation yields three equations

p1f 1
22p0h f 1

d f1

dh
1

1

b F f 2

d f1

dh
2

1

h

d

dh
~h f 21!G50,

~24!

p012p12p2151, ~25a!

p01p150. ~25b!

The system containing the three equations~23!, ~25a! and
~25b! with the variablesp0 , p1 , p2 , andp2,1 cannot yet be
solved definitively. A further relation is needed for that pu
pose. It follows from the self-similarity of the Reynold
shear stress

u28u18

ū1*
2 52 f 21~h!, ~26a!

ū1* ~x1!5ū1~x1,0! ~26b!

and is

2p12p2150. ~27!

Finally, the solution of Eqs.~23!, ~25a!, ~25b!, and~27! can
easily be determined,

p051, ~28a!

p1521, ~28b!

p2521, ~28c!

p21522. ~28d!

After a substitution of Eqs.~28a! and~28b! into Eq.~22! one
obtains the continuity equation

f 11h
d f1

dh
2

1

b

1

h

d

dh
~h f 2!50, ~29!

and analogously the momentum equation~24! alters to

f 1
21h f 1

d f1

dh
2

1

b F f 2

d f1

dh
2

1

h

d

dh
~h f 21!G50. ~30!
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At present only two equations exist for the three functio
f 1 , f 2 , and f 2,1. Therefore, as pointed out in Sec. II, a cl
sure or a turbulence model is demanded. Thus, at this s
the DQTM is applied.

V. MEAN VELOCITIES
AND THE REYNOLDS SHEAR STRESS

The normalized mean velocity in the radial direction
derived by a partial integration of a rearranged equation~29!

f 25bFh f 12
1

h E
0

h
f 1~j!j djG . ~31!

Now the DQTM is introduced. From Fig. 1~a! one can im-
mediately see that

x2max
50, ~32a!

ū1min
50, ~32b!

ū1max
5ū1* ~x1!. ~32c!

The quantityb defines the width of the jet, where the kinet
energy of the mean motion in thex1 direction 1

2 rū1
2 decays

to the fraction 1/e. Then we obtain

s5
db

dx1
~33a!

5b, ~33b!

b5tanS a

2 D . ~33c!

It is clear that a higher Reynolds stress is related to a la
spreading anglea of the jet. From Eqs.~6! and ~32! it fol-
lows that

f 2152b
1

h
f 1~12 f 1!. ~34!

Equations~31! and ~34! are inserted into Eq.~30!. These
substitutions lead to

E
0

h
f 1~j!j dj5122 f 12h

f 1
2

f 18
, ~35a!

f 185
d f1

dh
. ~35b!

Taking the derivative of Eq.~35a! yields a highly nonlinear
ordinary differential equation for the mean flow velocity
the axial direction

h f 1
2f 1922~ f 18!323h f 1~ f 18!22 f 1

2f 1850. ~36!

The solution of the differential equation is

f 15exp~2 1
2 h2!. ~37!

In Fig. 3 the analytical solution for the axial mean velo
s

ge

er

ity is compared with the experimental data from Ref.@14#.
When the solution off 1 is inserted into Eq.~31!, the mean
velocity in the radial direction is obtained

f 25bH h expS 2
1

2
h2D2

1

h F12expS 2
1

2
h2D G J .

~38!

From Eqs.~37! and ~38! it follows immediately that

f 25bFh f 12
1

h
~12 f 1!G . ~39!

To compare model results with experiments, the data
Wygnanski and Fiedler@14# have been chosen. The reas
for this is that they also have published information on t
radial velocity profile~see Fig. 4!. A further comparison has
been added to the figure. The experimental results of Fi
have been inserted into Eq.~39! to obtain mean velocities in
the radial direction shown for three distances downstre
which are presented by open markers. In the domainh
51.4, . . . ,2.4 theexperimental data are slightly higher tha
the corresponding quantities stemming from the calcula
function. Otherwise the agreement is good.

From Eqs.~34! and~37! one obtains the radial shear stre
distribution

f 2152b
1

h FexpS 2
1

2
h2D2exp~2h2!G . ~40!

In Fig. 5, besides the agreement with theoretical results,
mapping together of the different extracted experimen
data, those represented by aD and the others marked by a
I , is a very reliable test of the performance of the differen
quotient turbulence model.

VI. ENTRAINMENT

The mass flow rates can be derived from the mean vel
ties. The mass flux in axial direction is

FIG. 3. Experimental data of the time-averaged velocity com
nent in the downstream direction, taken from Ref.@14#. These are
compared with theoretical results calculated by applying
DQTM. The measured points lie very close to the Gaussian dis
bution function~37!.
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m152prE
0

`

ū1x2dx2 . ~41!

The outgoing mass flow at the nozzle exit is

m05rp
d0

2

4
u0 . ~42!

Inserting Eq.~37! into Eq. ~41! and dividing by Eq.~42!
leads to

m1

m0
5k1S x1

d0
D ~43a!

58
b2

m2 S x1

x0
D , ~43b!

FIG. 4. Theoretical results are compared with the data fr
measurements given in Ref.@14#. The open markers denote tran
formed experimental data shown in Fig. 3. The radial mean velo
is less than 2% of the axial mean velocity. The conditionf 2,0
describes domains where the flow vectors point toward the a
Here entrainment of ambient air into the jet occurs.

FIG. 5. The directly measured Reynolds shear stresses are
noted by aD. The number after the capital letterD denotes the
distance downstream from the nozzle and is measured in uni
d0 . The three Reynolds shear stresses, represented by anI , were
calculated by taking the data off 1 shown in Fig. 3 and then apply
ing Eq. ~34!.
k158
b2

m
, ~43c!

where the definition of the mixing number

m5
d0

x0
~44!

has been introduced. It is the dimensionless ratio of the t
diameterd0 and the fictitious core distancex0 . The mixing
number shows values of

m50.15– 0.18. ~45!

when jets emerge from round nozzles.
Ricou and Spalding@30# also report a linear behavior o

the mass flux as a function of the axial distancex1 . After a
reviewing process they conclude that the values of the c
stantk1 obtained@see Eqs.~43a! and~43c!# range from about
0.22 up to 0.404 according to the investigators. Their o
experimentally determined value of this constant is 0.
They further comment that in the present state of turbule
theory the constantk1 can only be determined by experime
tal means. In Sec. VII it is shown that with high accuracy w
have

m52b ~46a!

⇔k154b. ~46b!

Ricou and Spalding do not mention the spreading angle
the spreading parameter. However, fromk150.32, with Eq.
~46b!, b is now determined to be 0.080, which certainly mu
be close to its actual value~compare, e.g., in Ref.@14#
b50.074 or in Ref.@20# b50.082!. The experimental results
of Ricou and Spalding are shown in Fig. 6. There is no do
that the mass flow is very accurately a linear function ofx1 .

VII. A PROPOSITION
AND THE REYNOLDS NORMAL STRESSES

At the beginning of this section a proposition is intr
duced, which in the remainder of the section is proved in
context of the DQTM.

Proposition. The relative turbulence intensity in th
downstream direction on the axis of the jet in the se
similarity domain is identical to the square root of its sprea
ing parameter

Au18
2/ū1* 5Ab. ~P47!

The definition of the normalizing quantity of the fluctuatio
intensity has been presented in Sec. V@see Eq.~32c!#.

In this article, no reference is made to known relatio
between potential core lengths and spreading angles of
~Fig. 1! ~see, e.g.,@31#!. The aim of this section is to deter
mine the normal turbulence stresses in the three space d
tions. From the DQTM, by replacing all second indices
the first (2→1), the following second-order correlatio
function is obtained:

ty

s.

de-

of



:

ec

re
q
re

ig.

he

e

tio
w
t

u-
en

or

o-
sity

PRE 58 465DIFFERENCE-QUOTIENT TURBULENCE MODEL: THE . . .
u18
252sx1~ ū12ū1min

!
ū1max

2ū1

x1max
2x1

, ~A48a!

x1max
:5$x1uū15max

x1

$ū1%%. ~A48b!

From Fig. 1 the following obvious relations are extracted

x15x0 , ~49a!

x1max
5x0 , ~49b!

ū1min
50, ~49c!

ū1max
5u0 , ~49d!

together with solutions already introduced in previous s
tions @see Eqs.~33a! and ~33b!#. It is meaningful that the
characteristic length in the longitudinal directionx1 is iden-
tical to the only available length in this direction, the co
distancex0 . Inserting the values just determined into E
~48a! and slightly rearranging the following equations a
obtained:

f 115
u18

2

ū1*
2 ~50a!

5S x1

x0
2 f 1

x1

x0
21

D b f 1 , ~50b!

ū1* 5u0S x0

x1
D , ~50c!

g115Af 11. ~50d!

With Eqs.~50a!–~50d! the normal stress was calculated@see

FIG. 6. The linear dependence of the mass flux in axial direc
on the distance downstream from the origin of the jet also follo
from dimensional analysis. The theory presented, based on
DQTM, yields different relations, which also match very well n
merically. In this figure a comparison of theoretical and experim
tal data from Ref.@30# is shown.
-

. Fig. 7~a!#. Corresponding measurements are shown in F
7~b!.

At large distances from the nozzle, because 0< f 1<1 ac-
cording to Eq.~37!, the self-preservation increases and t
solution ~50b! becomes completely self-similar,

f 115b f 1~h!, x1@x0 . ~51!

Equation~50b! suggests the following limit to the relativ
fluctuation intensity on the axis of the jet:

g115AbAf 1~0!Fx1

x0
2 f 1~0!G

x1

x0
21

~52a!

5Ab ~52b!

5const, ~52c!

n
s
he

-

FIG. 7. Fluctuation intensities in the longitudinal direction f
different distances downstream. The~b! experimentally observed
off axis peaks at small distances~from Refs.@14,16#! are also ob-
servable in the~a! theoretical results. In accordance with the prop
sition, when an experimental jet shows a higher fluctuation inten
on the axis the spreading angle is also larger.
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because f 1(0)51. The final result ~52b! ‘‘proves’’ the
proposition on the basis of the DQTM. However, it must
remembered that the model has not yet been rigorously
rived from first principles.

The jet measured by Corrsin and Uberoi@16# is narrower
than the one that was experimentally investigated by Wy
anski and Fiedler@14# @Fig. 7~b!#. This completely corre-
sponds to the presented theory, which states that the fluc
tion intensity on the axis~see in the same figure atx2 /x1
50! is smaller in the case of a narrower jet. However, t
only qualitatively confirms proposition~P47! by measure-
ments. More reliable comparisons of theoretical predictio
and experimental data of the normal stress in the axial di
tion are shown in Fig. 8. The deviation of measureme
from the theoretical results varies to a great extent on
experimental work taken into consideration in each case.
example, in Ref.@32# it was reported that in many exper
ments self-preservation was not attained completely.
lack of self-preservation leads to deviations. It is believ
that these deviations, occurring at mediumx2 /x1 only, are
caused by the underlying production of turbulent kinetic e
ergy and that fluctuation energy has not been perfectly
tributed over the whole width of the jet by transportation
the mean motion and turbulent convection. For example,
ter agreement has been obtained in experiments perform
a helium jet@20#. Wygnanski and Fiedler@14# interpret the
deviations as follows: ‘‘The fact that the longitudinal inte
sity contains more of its energy at the lower part of t
spectrum is indicative of the manner in which the energy
being transferred, namely from the mean motion tou18 , and
only then tou28 andu38 . ’’

Because the agreement is good atx250, from measured
data the following results are obtained, which provide a c
firmation of proposition~P47! by experiments: The mea
velocity profile ~Fig. 3, b determined by curve fitting!
b50.074 and the axial fluctuation intensity~Fig. 8, x2 /x1

50! Ab50.28⇔b50.079. Following the statement o
proposition~P47!, from one set of experimental data,b has

FIG. 8. The relative fluctuation intensity in the axial direction
shown. The experimental data stem from Ref.@14#. The deviation
of the theoretical function from the experimental results at m
distancesh is related to the production of turbulent kinetic ener
and an incomplete turbulent transport of this kind of energy.
e-

-

a-

s

s
c-
s
e
or

e
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t-
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been derived in two different ways. The deviation of the tw
results is small. This confirms the proposition.

To calculateu28 andu38 it is assumed that the second an
third diagonal component of the Reynolds tensor show
same spatial distribution but with a slightly smaller intens

u28
25u38

2 ~A53a!

5
g

b
u18

2, g<b, ~A53b!

isotropy ⇔g5b. ~A53c!

The momentum conservation equation@20# is

M ~x1!52prE
0

`S ū1
21u18

22
u28

21u38
2

2
D x2dx2 ~54a!

5M ~0! ~54b!

5
pd0

2

4
ru0

2. ~54c!

Panchapakesan and Lumley@20# have found experimentally
that this conservation is valid within65% deviation from
M (0) for distances 30<x1 /d0<150. For the self-similarity
domain, substituting Eqs.~18!, ~50b!, and ~53b! into Eq.
~54a!, after a division byū1*

2 it follows that

E
0

`F f 1
21~b2g!

x1

x0
2 f 1

x1

x0
21

f 1G h dh5
1

8b2 S d0

x1
D 2S u0

ū1*
D 2

.

~55!

After the introduction of the Gaussian distribution functio
~37! into Eq. ~55!, with j5h2, the following equation is
obtained:

~g2b21!E
0

`

e2jdj1
x1

x0
F E

0

`

e2jdj1~b2g!E
0

`

e2j/2djG
5

1

4b2 S d0

x0
D 2S x1

x0
21D . ~56!

Applying Eq. ~44!, after some reductions in size, a simp
relation follows:

g5b2

S 12
m2

4b2D S 12
x1

x0
D

2
x1

x0
21

, ~57a!

isotropy⇔b5g ~57b!

⇔m52b. ~57c!

Note that Eq.~57c! is identical to Eq.~46a!, which was used
without a derivation at the previous stage to calculate
entrainment rate. An incomplete self-preserving state is ch
acterized bym.2b. In Figs. 9~a! and 9~b! m is 2% higher

n



ha
h

e
e
je

po
el
xia

e
ho
.

w
ua

o

rg

he

ec

he

ow

o

ef.

PRE 58 467DIFFERENCE-QUOTIENT TURBULENCE MODEL: THE . . .
than 2b. Comparing the results of Figs. 8 and 9, we note t
the experiments do not indicate isotropy on the axis, whic
in contrast to results observed by other investigators~see,
e.g., Refs.@15,32#!, who found isotropic behavior in som
domain around the jet axis. Such conditions are to be
pected since production of turbulence in the middle of the
is weak and the turbulence present is mainly due to trans
by mean and turbulent motion. Because of the lack of s
preservation, the additional energy still contained in the a
fluctuation correlations at intermediateh ~Fig. 8! is missing
in the intensities in the radial and azimuthal directions@Figs.
9~a! and 9~b!#. This is why these contributions, which hav
reasonable profiles compared to model calculations, s
smaller amplitudes in comparison to the results in Fig. 8

VIII. TURBULENCE ENERGY BALANCE

The turbulent energy equation for an axisymmetric flo
can be derived straightforwardly from the momentum eq
tion @13#

p1c1d1p1d 50. ~58!

The first energy term in this equation is the description
production of turbulent kinetic energy

p5u28u18
]ū1

]x2
1u18

2 ]ū1

]x1
1u28

2 ]ū2

]x2
. ~59!

The second termc describes the turbulent convection

c5
]

]x1
~ ū1«̄ !1

1

x2

]

]x2
~x2ū2«̄ !, ~60a!

«̄5ū1*
2e, ~60b!

wheree describes the dimensionless turbulent kinetic ene
@see below, Eqs.~76a!–~76c!# and

«5 1
2 ui8ui8 , i P$1,2,3%. ~61!

In Eq. ~61! Einstein’s summation convention is applied. T
diffusion d is given by

d5
]

]x1
~u1«!1

1

x2

]

]x2
~x2u2«!. ~62!

The quantityp denotes the pressure diffusion

p5
1

r F ]

]x1
~u1p!1

1

x2

]

]x2
~x2u2p!G ~63!

andd the dissipation term

d 5n
]ui8

]xj

]ui8

]xj
. ~64!

The first two terms, which denote production and conv
tion, contain correlations that have already been derived
this article. Therefore, they will be examined further. T
last three contributions in Eq.~58! show additional correla-
tions, which we intend to refer to in a subsequent work. N
a second proposition can be stated.
t
is

x-
t
rt

f-
l

w

-

f

y

-
in

Proposition.The relative turbulent productionp~h! on the
axis of the jet in the self-similarity domain is identical t
minus half of the spreading parameter

p~0!52b/2. ~P65!

The productionp is made dimensionless

p5
px1

ū1*
3 . ~66!

It is straightforward to derive

p5x1H 2 f 21

d f1

dh

]h

]x2
1 f 11

1

ū1*
F]ū1*

]x1
f 11ū1*

d f1

dh

]h

]x1
G

1 f 22

d f2

dh

]h

]x2
J . ~67!

With

FIG. 9. Relative intensities in the~a! radial direction and~b!
azimuthal direction. Experimental data have been copied from R
@14#. The functionsg22 andg33 are defined as shown in Eqs.~50a!–
~50d!, but by taking the intensities in thex2 and x3 directions,
respectively into consideration.



ed

re
n
n

ns

,

.

to

s

ted

the
pa-

468 PRE 58PETER W. EGOLF AND DANIEL A. WEISS
]h

]x1
52h

1

x1
, ~68a!

]h

]x2
5

1

bx1
, ~68b!

dū1*

dx1
52

1

x1
ū1* , ~68c!

it follows that

p52
1

b
f 21

d f1

dh
2 f 11S f 11h

d f1

dh D1
1

b
f 22

d f2

dh
. ~69!

Equation ~34! is now inserted forf 21. Equation ~39!
yields the expression forf 2 and Eq.~51!, with the isotropy
assumption~A53c!, leads to the function describingf 11 and
f 22. After several terms have canceled out, we obtain

p5S 1

h
f 1

d f1

dh
1b

1

h2 f 1D ~12 f 1!1b
1

h
f 1

d f1

dh
. ~70!

From Eq.~37! it follows immediately that

d f1

dh
52h f 1 . ~71!

With this equation, several simplifications can be appli
Then we obtain

p5 f 1
32 f 1

2S 11b1b
1

h2D1b
1

h2 f 1 . ~72!

This equation is graphically shown in Fig. 10, where its
sults are compared with data obtained by measureme
again from Ref.@14#. The absolute value of the productio
term shows a maximum at finiteh.

Applying a Taylor expansion to the exponential functio
describingf 1 in Eq. ~72! produces

p5S 12
3

2
h2D2~12h2!S 11b1b

1

h2D
1b

1

h2 S 12
1

2
h2D ~73a!

5h2S b2
1

2D2
1

2
b. ~73b!

Now the function on the axis, whereh50, can be evaluated

p~0!52 1
2 b. ~74!

This is exactly the statement of the second proposition~P65!.
With b50.074 one obtainsp520.037~see in Fig. 10 at the
locationh50!.

The third proposition is related to the convection term
Proposition.The relative turbulent convectionx~h! on the

axis of the jet in the self-similarity domain is identical
minus three times the spreading parameter

x~0!523b. ~P75!
.

-
ts,

The dimensionless turbulent kinetic energye of the jet can
be determined from some results derived in Sec. VII,

e~x1 ,x2!5
1

2

u18
21u28

21u38
2

ū1*
2 ~76a!

5
b12g

2 S x1

x0
2 f 1

x1

x0
21

D f 1

~76b!

>
3

2
bS x1

x0
2 f 1

x1

x0
21

D f 1 . ~76c!

Again for simplicity only large distancesx1@x0 and isotropy
of the fluctuations@see Eq.~76c!# are considered. Then

e5
3

2
b f 1 . ~77!

Equation~60a! is then further developed

c5
d f1

dh

]h

]x1
ū1*

3e13 f 1ū1*
2

dū1*

dx1
e1 f 1ū1*

3 de

dh

]h

]x1

1
1

x2
f 2ū1*

3e1
d f2

dh

]h

]x2
ū1*

3e1 f 2ū1*
3 de

dh

]h

]x2
.

~78!

With Eqs. ~68a!–~68c! one obtains for the dimensionles
convection term

x5
cx1

ū1*
3 ~79!

FIG. 10. The dimensionless turbulent production term extrac
from measurements~from Ref. @14#! and calculated with the
DQTM. The turbulent production term has a local maximum on
axis. Its numerical number is directly related to the spreading
rameter.
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the result

x52h
d f1

dh
e23 f 1e2h f 1

de

dh

1
1

b

1

h
f 2e1

1

b

d f2

dh
e1

1

b
f 2

de

dh
. ~80!

Inserting Eq.~39! together with Eq.~77! and after canceling
a great number of terms a next intermediate result is

x5
3

2
bS 2

1

h
f 1

d f1

dh
2 f 1

22
1

h

d f1

dh D . ~81!

Substituting the solution~71!, the final turbulent convection
term reduces to an even more simple analytical expres
than the production term~72!,

x5 3
2 b f 1~123 f 1!. ~82!

This result is in very good coincidence with measureme
derived by experimental means by Wygnanski and Fied
@14#. Their curve, fitted to the measured data, is referred t
several articles and textbooks published in the years su
quent to their work.

Becausef 1(0)51, the special algebraic expression on t
axis is

x~0!5 3
2 b f 1~0!@123 f 1~0!# ~83a!

523b, ~83b!

which proves the third proposition~P75! on the basis of the
DQTM and notably, without the occurrence of a single e
pirical constant. Ifb50.074, thenx(0)520.222~compare
with the numerical ordinate value in Fig. 11!.

IX. CONCLUSIONS

A nonlocal ansatz, which Prandtl and Hinze assumed
be a good basis for the development of a useful turbule
J

on

ts
r

in
e-

-

to
ce

model, is taken to derive the DQTM. This derivation is n
yet rigorous, but its features are at least compatible w
generally accepted methods of turbulence modeling. The
comprehensive theory of the axisymmetric isothermal
based on the DQTM, describing up to second order m
ments, is presented. Compared to existing similar mod
known to the authors, this presentation has the least num
of empirical constants. In this theory it is shown that fluctu
tion quantities and turbulent energy terms on the jet axis
proportional to the spreading parameter of the jet. The m
flow at any cross section in the self-similarity domain dow
stream of the nozzle is also directly related to the spread
parameter. All the results are very simple analytical form
las. Their agreement with experimental data is good.
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FIG. 11. The dimensionless turbulent convection term extrac
from measurements~from Ref. @14#! and calculated with the
DQTM. At h51.2 the sign of this turbulence energy alters. T
function takes a maximum at approximatelyh52.1 and decrease
toward infinity to zero.
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